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Questions and Empirical Strategies in the Existing Literature

Q1: What is the effect of an aggregate shock on the cross-sectional distribution of x?
Q2: How does the x of particular households (or firms) respond to an aggregate shock?

Approach Data Requirements Examples

Q1 Functional VAR Rep. cross sections Chang, Chen, Schorfheide (2024); Chang,
Schorfheide (2024); Ettmeier (2023)

Q1 VAR with inequality stats Rep. cross sections Coibion, Gorodnichenko, Kueng, Silvia (2017);
Furceri, Loungani, Zdzienicka (2018); Guerello
(2018)

Q1, Q2 Indirect calculation: multiply in-
come component or asset share
by aggregate IRF

One cross section McKay, Wolf (2023); Lenza, Slacalek (2023);
Del Canto, Grigsby, Qian, Walsh (2023)

Q2 Panel model to track individu-
als (usually group heterogeneity)

Panel data (admin) Holm, Paul, Tischbirek (2021); Almuzara and
Sancibrian (2023); Amberg, Jansson, Klein, Ro-
gantini Picco (2022); Andersen, Johannesen,
Jorgesen, Peydro (2021)

Q2 Pseudo panel to track groups Rep. cross section Anderson, Inoue, Rossi (2016); Cloyne, Ferreira,
Surico (2020); Mitman, Broer, Kramer (2022)
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Overview / Contribution

• Administrative data set from Germany that has panel structure but can also be used as
repeated cross sections.

• Empirical contribution 1: estimate a functional VAR (building on our earlier work) to
measure the response of the earnings distribution to a productivity shock for Germany.

• Methodological contribution: replace the functional part of the VAR by unit-level
income dynamics equation (panel+VAR), discuss model features, outline estimation
strategy.

• Empirical contribution 2: compare the panel+VAR responses to the functional VAR
results.

• Discuss pros and cons of the respective empirical approaches.
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1 Functional vs. panel modeling

2 Data set used in this project

3 Functional model: specification and empirical results

4 VAR + panel model: specification and empirical results

5 Conclusion
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Stylized Example: Interaction Between Macro- and Microdynamics

• Aggregate variable yt , cross-sectional variable xit with density pxt (x).

• Macro dynamics:

yt = Byyyt−1 +

∫
Byl(x̃)[ln p

x
t−1(x̃)]dx̃ + ϵt , ϵt

iid∼ pϵ(ϵ). (1)

• Individual-level dynamics:

xit = λi1yt + λi2yt−1 + ϕxxxit−1 + ηit , ηit
iid∼ pη(η), (λi1, λi2)

iid∼ pλ(λ1, λ2). (2)

• Density (functional) dynamics (can be linearized):

pxt (x) =

∫ ∫
pη

(
x − λ1yt − λ2yt−1 − ϕxx x̄

)
pλ(λ1, λ2)p

x
t−1(x̄)d(λ1, λ2)dx̄ . (3)

• Functional VAR approach: estimate (1) and of (3) linearized wrt. ℓt(x) = ln pxt (x).

• Panel approach: estimate (1) and (2).
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German Administrative Data: SIAB

• Panel data set containing a 2% sample of all individuals ever registered in the social
security system.

• Covers ≈ 80% of German labor force: excludes self-employed and civil servants.

• Data on daily earnings, together with working days per spell.

• Earnings are top-coded at the social security contribution ceiling.

• Sample selection: 1992:Q1 - 2019:Q4.
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Micro-level Observables
• Employment status: sit ∈ {1(E , employed), 2(U, unemployed), 3(O, out of sample)}.

• Assume that number of units i in the (E,U,O) universe is constant
by moving units into O state when they drop out of sample.

• Observe labor earnings when working: x̃itI{sit = 1}.

• Average cross-sectional earnings

x̄t =

∑N
i=1 x̃itI{sit = 1}∑N
i=1 I{sit = 1}

. (4)

• Standardization + inverse hyperbolic sine transformation of observed earnings to remove
trend and capture spatial correlation due to aggregate shocks:

xit = f (x̃it/x̄t). (5)

• Unemployment rate

URt =

∑N
i=1 I{sit = 2}∑N

i=1 I{sit = 1}+
∑N

i=1 I{sit = 2}
. (6)
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Aggregate Data and Shocks

• Macro variables:

• Log labor productivity, measured as total hours worked/total GDP
(Federal Statistical Office Germany)

• Log real GDP per capita (Federal Statistical Office Germany)

• Log average earnings (SIAB) ln x̄t from above

• Unemployment rate or EE EO UU UO OE OO transition probabilities (SIAB)

• Recursive shock identification: shock to labor productivity which is ordered first.

• Note: analysis can be done with monetary or fiscal shocks, but we wanted to maximize
variation generated by shock.
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Functional Model for Empirical Analysis

• Each t: econometrician observes Yt and a sample of N iid draws xit from pt(x).

• Measurement equation for micro data:

xit ∼ pt(x) =
exp{ℓt(x)}∫
exp{ℓt(x)}dx

.

• State-transition equations:

Yt = By0 + ByyYt−1 + Byl [ℓt−1] + uy ,t

ℓt(x) = Bl0(x) + Bly (x)Yt−1 + B ll [ℓt−1](x) + ul,t(x),

e.g. B ll [ℓt−1](x) =

∫
Bll(x , x̃)ℓt−1(x̃)dx̃

• Use a sieve approximation for ℓt(x) (and operators) to obtain K -dim model:

ℓt(x) ≈ ℓ
(K)
t (x) =

K∑
k=1

αk,tζk(x) = ζ ′(x)αt .

• Bayesian estimation: see Chang, Chen, and Schorfheide (forthcoming, JPE).
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Estimated Densities for Three Time Periods
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IRFs of the Aggregate Variables
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IRF of Percentiles and Inequality Statistics
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Summary of FVAR Results / Next Steps

Summary of FVAR Results:

• Including zero earnings in pctls: unemployment ↓ 7→ more units with positive earnings 7→
10th percentile ↑; gains at 90th percentile are stronger 7→ inequality ↑.

• Excluding zero earnings in pctls: drop at 10th percentile could be result of rigid labor
market for low-skilleds and slowly adjusting wages.

• Cyclicality of inequality: pro-cyclical in German data; countercyclical in U.S. data.

Next Steps:

• Keep the aggregate VAR part but replace the functional dynamics in previous model with
unit level xit dynamics.

• Transition probabilities for employment status (E, U, O) replace unemployment rate in
vector of aggregate variables.

• Generate IRFs at unit level and then aggregate into distributional response.
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VAR+Panel Model

• Yt stacks three macro observables:
labor productivity, real GDP per capita, log average earnings.

• Define unobserved transition probabilities: Πjk,t = P{sit = j |sit−1 = k}.
• D1:N,1:T collects the micro observables (sit , xitI{sit = 1}) for i = 1, . . . ,N and
t = 1, . . . ,T .

• For p = 1 we obtain factorization:

p(Y1:T ,Π1:T ,D1:N,1:T |θ) (7)

=
T∏
t=1

(
p(Yt ,Πt |Yt−1,Πt−1, ℓt−1, θ)p(ℓt−1|Dit−1)︸ ︷︷ ︸

VAR part

× p(s1:N,t |Πt ,Dit−1)
N∏
i=1

p(xitI{sit = 1}|sit ,Yt ,Yt−1,Dit−1, θ)︸ ︷︷ ︸
panel part

)
.
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VAR+Panel Model: Some Remarks

• Typically panel and VAR models are not integrated. We do integrate the two
components.

• Large sample arguments are required to
• replace latent Πkt,ts by estimates Π̂jk,t = Njk,t/

∑3
j=1 Njk,t ;

• replace ℓt−1 by ℓ̂t−1(Dit−1).

• Model and parameters are set up so panel and VAR part can be estimated separately.

• We assumed that transition probabilities for sit do not depend on unit-level characteristics.
Abstract from selection effects for now.

• “Missing intercept” (McKay and Wolf; Barnichon and Mesters) implicitly through feedback
from lagged cross-sectional distribution into aggregate variables (not yet implemented).
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VAR+Panel Model: Three-Step Estimation

1 Π̂t from transition counts.

2 θagg based on VAR with Υ̂t = [Yt , Π̂t ] with ℓ̂t−1(x) as additional explanatory variable (not
yet implemented for current results).

3 θmic based on panel model which includes:

• U 7→ E transitions: p(xitI{sit = 1}|sit = 1,Yt , sit−1 = 2, θmic);

• O 7→ E transitions: p(xitI{sit = 1}|sit = 1,Yt , sit−1 = 3, θmic);

• E 7→ E transitions: p(xitI{sit = 1}|sit = 1,Yt ,Dit−1, θmic).
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VAR+Panel Model: E 7→ E Transitions

• (Simplified) earnings process (Zt is a linear function of (Yt ,Yt−1))

xit = ρxit−1 + αi + β′
iZt + ηit , ηit ∼ N (0, σ2

i ). (8)

• (Parametric) correlated random effects assumption:

(αi , βi , σ
2
i )

iid∼ p(α, β|xi0, σ2, ξ)p(σ2|ξ) (9)

p(α, β|xi0, σ2, ξ̂) ≡ N

0.08 + 0.11xi0
−.016
.004

 , σ2

0.210 6E−6
λ

0 − 7E−7
λ

2E−7
λ

 , λ = .0025

p(σ2|ξ̂) ≡ IG
(
ν = 5, s2 = 5 · 0.182

)
• Bayesian estimation... (in progress). Results are obtained by taking a couple of short

cuts.
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Scatterplots of Posterior Mean Estimates ᾱi and β̄i
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Impulse Response of Cross-Sectional Units + Densities

Fix an event date T0, e.g., 2010:Q1. Shock happens in Q2.

For h = 0, . . . ,H: for baseline “0” trajectories (no productivity shock at h = 0) and shocked
“s” trajectories (one std dev productivity shock at h = 0).

1 Using cross-sectional data from period t = T0 + h − 1 estimate coefficients for
cross-sectional log densities ℓ0t+h−1(·) and ℓst+h−1(·)

2 Iterate estimated aggregate VAR forward to obtain Υ0
t+h and Υs

t+h (based on Υ0
t+h−1,

Υs
t+h−1, ℓ

0
t+h−1, and ℓst+h−1).

3 Conditional on Υ0
t+h and Υs

t+h, generate (x0it+hI{ssit+h = 1}, ssit+h) and
(x sit+hI{ssit+h = 1}, ssit+h) for i = 1, . . . ,N.

4 Estimate log spline densities to obtain p0t+h(·) and pst+h(·).
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Impulse Response of Cross-sectional Densities, h = 4
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Remarks

• Results are very preliminary.

• Density differentials are qualitatively similar, but quantitatively different.

• Distributional effect obtained from panel analysis is more muted. Modeling of income
dynamics needs to be refined in various dimensions (negative income in simulations, top
coding, etc.).

• Once there is a match between distributional responses, panel information can be used to
shed more insights into explanations for the distributional shifts. (How do certain groups
of individuals react?)
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How Does All of This Relate to Panel Local Projections?

• In a VAR setting, multi-step regressions can recover coefficient matrices of a Wold
representation.
(+) less bias if VAR alternative is misspecified;
(-) can be inefficient compared to VAR estimation; see Schorfheide (2005).

• In a panel setting, trade-offs are largely unexplored. Requires a Wold representation for a
high-dimensional process with some nonlinearities.

• Panel local projections typically assume observed group heterogeneity

xit = ρgi xit−1 + αgi + β′
giZt + ηit , gi ∈ {1, 2, . . . ,G}.

=⇒ parsimonious, but typically ignores a large amount of heterogeneity
=⇒ OK for Q2, but not good for Q1.
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Conclusion

• Use German administrative data to compare two empirical approaches...

• Functional modeling:

(+) repeated cross-sections suffice
(+) unit-level behavior and heterogeneity does not need to be explicitly modeled
(–) cannot track behavior of cross-sectional units.

• Panel modeling:

(+) ability to track unit-level behavior
(–) estimation requires panel data
(–) challenging to specify unit-level law-of-motion: heterogeneity, non-Gaussianity, nonlinearity

• In practice, researchers are limited by the availability of data sets. Insights from this
research may be useful for combining different types of data sets and conducting analyses
with mixed-frequency data.
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